skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Awad, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Snow accumulation on solar panels presents a significant challenge to energy generation in snowy regions, reducing the efficiency of solar photovoltaic (PV) systems and impacting economic viability. While prior studies have explored snow detection using fixed-camera setups, these methods suffer from scalability limitations, stationary viewpoints, and the need for reference images. This study introduces an automated deep-learning framework that leverages drone-captured imagery to detect and quantify snow coverage on solar panels, aiming to enhance power forecasting and optimize snow removal strategies in winter conditions. We developed and evaluated two approaches using YOLO-based models: Approach 1, a high-precision method utilizing a two-class detection model, and Approach 2, a real-time single-class detection model optimized for fast inference. While Approach 1 demonstrated superior accuracy, achieving an overall precision of 89% and recall of 82%, it is computationally expensive, making it more suitable for strategic decision making. Approach 2, with a precision of 93% and a recall of 75%, provides a lightweight and efficient alternative for real-time monitoring but is sensitive to lighting variations. The proposed framework calculates snow coverage percentages (SCP) to support snow removal planning, minimize downtime, and optimize power generation. Compared to fixed-camera-based snow detection models, our approach leverages drone imagery to improve detection precision while offering greater scalability to be adopted for large solar farms. Qualitative and quantitative analysis of both approaches is presented in this paper, highlighting their strengths and weaknesses in different environmental conditions. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Underwater image enhancement is often perceived as a disadvantageous process to object detection. We propose a novel analysis of the interactions between enhancement and detection, elaborating on the potential of enhancement to improve detection. In particular, we evaluate object detection performance for each individual image rather than across the entire set to allow a direct performance comparison of each image before and after enhancement. This approach enables the generation of unique queries to identify the outperforming and underperforming enhanced images compared to the original images. To accomplish this, we first produce enhanced image sets of the original images using recent image enhancement models. Each enhanced set is then divided into two groups: (1) images that outperform or match the performance of the original images and (2) images that underperform. Subsequently, we create mixed original-enhanced sets by replacing underperforming enhanced images with their corresponding original images. Next, we conduct a detailed analysis by evaluating all generated groups for quality and detection performance attributes. Finally, we perform an overlap analysis between the generated enhanced sets to identify cases where the enhanced images of different enhancement algorithms unanimously outperform, equally perform, or underperform the original images. Our analysis reveals that, when evaluated individually, most enhanced images achieve equal or superior performance compared to their original counterparts. The proposed method uncovers variations in detection performance that are not apparent in a whole set as opposed to a per-image evaluation because the latter reveals that only a small percentage of enhanced images cause an overall negative impact on detection. We also find that over-enhancement may lead to deteriorated object detection performance. Lastly, we note that enhanced images reveal hidden objects that were not annotated due to the low visibility of the original images. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026